

Journal of Sustainable Agricultural Sciences http://jsas.journals.ekb.eg/



# Variability, Genetic Components and Selection Response in Segregating Generations among Some Cotton Crosses

## **Reham Helmy Gibely**

*Cotton Breeding Department, Cotton Research Institute, Agricultural Research Center, Giza, Egypt* 

THE SUCCESSFUL breeding program depends on genetic variability response to selection, heritability and genetic advance. The present investigation aimed to estimate these components in two intra-specific cotton crosses (Giza 92 x Giza 87 and Giza 96 x Giza 87) during early segregating generation. Most of the studied traits showed high broad sense heritability coupled with low or moderate genetic advance as percent of mean in F, generation. So, these traits controlled by non-additive gene action. The analysis of variances for F<sub>3</sub> families showed highly significant differences between F<sub>3</sub> families and variance within F<sub>3</sub>was lower than among families for all the studied traits over the two crosses. All F, families had low intraclass correlation values over the two crosses, so selection between families is better than within families. The additive genetic variance was larger than dominance variance for all the studied traits except for seed cotton yield / plant and lint %, also, these traits showed partial degree of dominance for cross I. While, cross II has higher values of dominance genetic variance than additive variance for all traits except for boll weight and fiber length, so that showed overdominance. Selection differential and response to selection were found to be positive for all traits during F<sub>2</sub> and F<sub>2</sub>. The probability of new recombinant lines falling outside parental range was higher in cross I than cross II for all traits except for boll weight and fiber length. The study reveals that judicious selection leads to improvement in next generation.

Keywords: Barbadense cotton, Segregating generation, Heritability, Selection, Selection response, and Genetic advance, Prediction.

### Introduction

Segregating generations are very important for plant breeder to improve commercial varieties by further selection development. The breeding programs aimed to estimate the amount of genetic variation for yield components and fiber quality traits during segregating generations, to assess genetic advanced that can be improved by different selection techniques. To achieve this aim, the cotton breeder should select desirable genotypes in early generations or increasing selection intensity up to advanced generations, to achieve more homozygous progenies. The F<sub>2</sub> generation has maximum segregations for selection. Heterozygosity showed the highest value in F<sub>2</sub> generation and decreased by 50% in the population every advanced generation. So, selection in  $F_2$  is applied on individual plants while at  $F_3$  is applied on  $F_3$  families (Falconer 1989 and Acquaah, 2012).

Improving both quantitative yield and fiber quality traits in cotton is a big challenge to the cotton breeders. So, success of breeding program depends on the better understanding and estimating for genetic variability (Gnanasekaran, et al. 2018).Genetic variation is the difference between individuals within a population and provides different parameters to the plant breeder; like phenotypic and genotypic coefficient of variation, heritability and genetic advance to start an efficient breeding program. Hybridization is still the important tool to create genetic variation and allows the most efficient method to select the best superior plants in segregating generations (Acquaah, 2012). Plant breeder used different selection techniques to change population genetic structure to maintain the desirable alleles and discarding the undesirable ones. The superior genotypes come from the recombination of superior alleles in different loci and the plant breeder could select it in different breeding stages (Gnanasekaran et al. 2018). To make selection more effective the breeder must depend on the phenotypic, genotypic and environmental variations.

Heritability provides information on the transmissibility of traits from one generation to another and could help breeders to predict the interaction between genes. Also, heritability coupled with genetic advance and genetic variability is a better tool to select suitable breeding technique in order to improve the genetic makeup of cotton plant (Aziz et al. 2014). The selection power of any generation depends on the amount of heritable variation which could transfer from one generation to the next. High genetic advance coupled with high heritability estimates offers a most effective response to selection. High heritable traits are less affected by environmental fluctuations, so simple selection techniques could be effective to improve these traits. Non-allelic interaction played a major role in decreasing heritability estimates (Soomro et al. 2010). Many cotton breeders study the association between heritability and genetic advance as a percent of mean in segregating generation in different cotton crosses (El-Mansy 2015, Abd El-Moghny 2016; Devidas et al. 2017; Khokhar et al. 2017; Vrinda and Patil 2018; Kumar et al. 2019).

The purpose of this study is to estimate genotypic and phenotypic coefficient of variation, heritability and genetic advance as a percent of mean in  $F_2$  and  $F_3$ , and extended to measure selection efficiency of plants selected in  $F_2$  generation at  $F_3$  stage by measuring heritability, genetic advance and selection response.

#### **Materials and Methods**

The plant materials used in this study were the salfed seeds of three generations  $F_1$ ,  $F_2$  and  $F_3$  of two intra-specific cotton crosses belonging to *Gossypium barbadense* L., with their original parents. These breeding materials were obtained from Cotton Breeding Department, Cotton Research Institute, Agricultural Research Center, Giza, Egypt. The present investigation was carried out at Sakha Research Station; ARC, Egypt, during the growing seasons from 2016 to 2019. The cotton crosses namely, cross I (Giza 92 x Giza 87) and cross II (Giza 96 x Giza 87). Origin, pedigree and characterization of parental

J. Sus. Agric. Sci. Vol. 47, No. 1 (2021)

cotton genotypes are presented in Table 1.

In the growing season of 2016, seeds of selfpollinated flowers of the three parents were planted and intra-specific hybridization was done to obtain two  $F_1$  crosses. The parental varieties were also self-pollinated to obtain enough seeds for further investigations. In the growing season of 2017, the  $F_1$  seeds of the two cotton crosses were planted to produce  $F_2$  plants and self-pollination was done to produce  $F_2$  seeds.

In the growing season of 2018, all the selfed seeds of the  $F_2$  generation were planted in unreplicated rows to produce  $F_2$  plants. Each row was 4 m long and 0.7 m wide and 10 plants per row 0.4 m spaced. At maturity all plants from each cross were harvested to estimate yield characters and test fiber quality traits. The superior plants from  $F_2$  generations were selected from each cross based on fiber quality to produce seeds of  $F_3$  families'.

In the growing season of 2019, the selfed seeds of selected plants from  $F_2$  generation were evaluated as  $F_3$  families in a randomized complete block design (RCBD) in two replications with their original parents. Each replicate consisted of two rows for parents and  $F_3$  families. Each row was 4 m long and 0.7 m wide and within plants within raw was 0.4 m to insure 10 plants per row. At maturity all plants from each family were harvested to estimate yield and fiber quality traits among two crosses. During all growing seasons all other normal culture practices were applied as recommended for ordinary cotton cultivation.

At maturity, the inner eight (guarded) individual plants from each row, of the two cotton crosses were harvested in each replicate and ginned in order to estimate yield componenttraits; boll weight (BW) g as the average weight of ten bolls / plant, seed cotton yield per plant (SCY/P) g, lint yield per plant (LY/P) g and lint percentage (L%). Also,the fiber quality traits fiber length (FL), fiber strength (FS), Micronaire value(Mic) and uniformity ratio (UR%) were estimated at Cotton Technology Laboratory, Cotton Research Institute, ARC, Giza, Egypt.

#### Biometrical assessment

The original obtained data were statistically analyzed for the ten quantitative yield and fiber quality traits. Data were subjected to basic descriptive statistics as outlined by Gomez and Gomez (1984) and variability among the three generations and their parents was determined. The phenotypic (PCV) and genotypic (GCV) coefficients of variation in  $F_2$  generation and broad sense heritability ( $h_{bs}^2$ ) were calculated according to the formula given by Falconer (1989).

# Analysis of variance and genetic components for F3 generation

Analysis of variance was carried out to obtain between and within family variances for the two cotton crosses to calculate both within  $(\sigma_W^2)$  and between  $(\sigma_B^2)$  family mean squares, both additive [D] and dominance [H] genetic component variances, intra-class correlation  $(t_{FS})$  and intra-class variability between  $F_3$  families and heritability in broad and narrow sense and degree of dominance were estimated as described by Sharma (1988 and Kearsey and Pooni (1996).

# Selection procedure among studied segregating generations

From the heritability estimates the genetic advance was estimated by the formula given by Burton (1952). The top 5% and 30% superior plants were selected from  $F_2$  plants and within  $F_3$  families, respectively, on the basis of yield components and fiber quality traits. Also, selection differential (S) was calculated for  $F_2$  plants and  $F_3$  families to detect the superiority of selected plants and families. Also, genetic advance (GA) and genetic advance as percent of mean (GAM %) was calculated to estimate the progress during segregating generations as described by Singh and Chaudhary (1985) and Falconer (1989).

Sivasubramanian and Menon (1973) classified phenotypic coefficient of variation (PCV) and genotypic coefficient of variation (GCV) to low (< 10%), moderate (10 - 20%) and high (> 20%). Heritability percentage was classified as low (0-30%), moderate (30–60%) and high (> 60%) as classified by Robinson *et al.* (1949). Also, the genetic advance as percent of mean was categorized as low (0-10%), (10-20%) considered as a moderate and more than 20% noticed as a high as described by Johnson et al. (1955).

Prediction of new recombinant in F3 generation The properties of new recombinant lines from a series of selfing generations of a cross between two inbreed lines were computed using Jinks and Pooni (1976) formulae. The values of [d] / $\sqrt{D}$ estimate the proportion of inbreed lines falling outside parental range of a cross. While, the mean of inbreed lines equal m±2 $\sqrt{D}$ . Where; m is mean of the two inbreed lines involved in each cross, [d] is the additive genetic components based on mean and D is additive genetic variance. The proportion of new recombinant lines corresponding to the probability level was obtained using Fisher and Yates (1963) Tables.

#### **Results and Discussion**

Genetic variability is a pre-requisite for successful breeding program to select the superior genotypes form different segregating generations. Hybridization technique is a source to create or increase genetic variation. F, generation is the first segregating generation which has maximum segregation and recombination ratio. Also, F, generation is equally important in selection process. The magnitude of recombination and variability depends on the genetic diversity between the two parents. The present investigation aims to estimate genetic variability across two segregation generations ( $F_2$  and  $F_3$ ) of two intra-specific cotton crosses to select the most superior plants. The basic statistic derivative (mean, range and coefficient of variability) of the two cotton crosses during three generations  $F_1$ ,  $F_2$  and  $F_3$  plus their three parents is presented in Table 2. A range of variability was observed concerning the eight studied traits among the two cotton crosses. This may be due to significant difference between parents for these traits. The maximum and minimum limits of range in F<sub>2</sub> were observed to be wider than in F<sub>2</sub> generation, except for uniformity ratio. This is a result of selection from one generation to another which leads to increase phenotypic mean performance in the population.

| Genotypes | Origin | Pedigree                               | Characterization                                                                    |
|-----------|--------|----------------------------------------|-------------------------------------------------------------------------------------|
| Giza 87   | Egypt  | (Giza 77 x Giza 45)A                   | Extra-long fiber quality variety, with low yield productivity.                      |
| Giza 92   | Egypt  | Giza 84 x (Giza 74 x Giza 68)          | Extra-long fiber quality variety with high fiber strength and low yield and lint %. |
| Giza 96   | Egypt  | Giza 84 x ((Giza 70 x Giza 51B) x S62) | Extra-long fiber quality variety with high yield and lint % more than 37%.          |

TABLE 1. Origin, pedigree and characterization of the three parental cotton genotypes

These two crosses are belonging to the extralong staple category, characterized by low yield traits and high values of fiber quality. The main target for cotton breeder is to select the higher yield productivity plants and maintain the higher fiber quality traits to achieve all targets for cotton producers. The two parents Giza 92 and Giza 87 had low yield traits and lint % was 33.95% and 33.74%, respectively. While, fiber quality traits were belonging to this category except fiber length for Giza 92 was 33.92mm but has the highest value for fiber strength 12 (Presley index). On the other hand, Giza 96 characterized by high yield traits especially for lint % (not less than 36%) coupled with extra-long fiber quality traits (Table 2). So, the Egyptian cotton breeder breaks the negative linkage between yield components and fiber quality traits. The new variety (Giza 96) achieve the targets for farmers (high yield), traders (high lint %) and spinners (extra-long fiber quality traits).

During early segregating generation the breeders are focusing on increase of yield and its components. Cross I (Giza 92 x Giza 87) have higher seed cotton yield / plant through F<sub>2</sub> and F<sub>3</sub> generations than each of its parents. Also, the lint % was higher 34.93% and 34.65% during F<sub>2</sub> and  $F_3$ , respectively compared to the two parents 33.95% for Giza 92 and 33.74% for Giza 87 (Table 2). Cross II (Giza 96 x Giza 87) showed less seed cotton yield / plant than the female parent (Giza 96) but higher than the male one (Giza 87) in F<sub>2</sub>, but increased in the F<sub>3</sub> generation compared to the two parents. For lint %was equal to the female parent (not less than 36%) but higher than the male one (33.74%). While, fiber quality traits were related to the extra-long staple category for the two cotton crosses.

#### Variability among F2 generation

The results pertaining to genetic parameters viz., phenotypic coefficient of variation (PCV), genotypic coefficient of variation (GCV) and broad sense heritability  $(h_{b}^2)$  for eight quantitative traits are furnished in Table 3. The PCV was higher than the GCV for all the studied traits. Phenotypic and Genotypic coefficient of variation ranged from 2.096 to 17.867 and from 1.794 to 16.875 for fiber length and micronaire value, respectively for cross I (Giza 92 x Giza 87). While, ranged from 0.696 to 0.436 and from 1.397 to 7.137 for uniformity ratio and lint yield / plant, respectively for the cross II (Giza 96 x Giza 87). Low PCV and GCV values (lower than 10) were observed for all the studied traits across the two cotton crosses except for Micronaire value for the first cross (Giza 92 x Giza 87). These results present narrow range of variability for these traits thereby restricting scope for selection.

J. Sus. Agric. Sci. Vol. 47, No. 1 (2021)

So, the cotton breeders should exploit diverse germplasm to increase genetic diversity (Khokhar et al. 2017). These results are in agreement with that of Devidas et al. (2017),Gnanasekaran, et al. (2018) and Ahsan and Mohmmod (2019). Also, Vrinda and Patil (2018) found low PCV and GCV for fiber quality traits with the exception of fiber strength in  $F_2$  population for Upland cotton cross. These results reflected narrow range of variability and low differences between PCV and GCV indicated that these traits were least affected by the environment, thus selection for these traits based on phenotype would be fruitful (Ahsan and Mohmmod 2019; Kumar et al. 2019).

The broad sense heritability is an important tool to make selection easier and effective. Broad sense heritability  $(h_{hs}^2)$  defined as the ratio between genotypic variance to total phenotypic variance is presented in Table 3. The heritability estimates were always high (>60%) for most of the studied traits as categorized by Robinson et al. (1949). These results reflect the greater values of genotypic variance than environmental variance. High heritability estimates indicated these traits could be improved through selection process in early generations. Similar findings were obtained by Devidas et al. (2017); Khokhar et al. (2017); Vrinda and Patil (2018); Gnanasekaran et al. (2018) and Kumar et al. (2019) for yield and fiber quality traits.

Selection differential (S) measures the intensity of artificial selection and response to selection provide information about the change in mean from a generation to the next one. So, the plant breeder considered genetic advance or genetic gain as the product of selection differential and heritability (Acquaah, 2012). Selection differential (S) for all the studied traits had positive values over the two crosses except for Micronaire value (negative is desirable) as shown in Table 3. Selection based on genotypic values may lead to increase phenotypic mean performance of selected plants in the next generation as a result of positive value of selection differential. Genetic advance ranged from 0.63 to 4.505 and from 0.514 to 3.999 for boll weight and seed cotton yield / plant across the two cotton crosses, respectively. The genetic advance showed higher values for all the studied traits in cross I (Giza 92 x Giza 87) than in cross II (Giza 96 x Giza 87) except lint %, also showed higher values through yield traits than fiber quality among the two crosses. On the other side, the genetic advance as a percent of mean (GAM %) has values less than 10% for all the studied traits except for boll weight and Micronaire value across both crosses as classified by Johnson et al. (1955).

| Cross I   |                  |                   | Cross II    |       |                     |       |        |  |
|-----------|------------------|-------------------|-------------|-------|---------------------|-------|--------|--|
| Traits    | Generations      | Giza 92           | 2 x Giza 8' | 7     | Giza 96 x Giza 87   |       |        |  |
|           |                  | Mean±SE           | Range       | CV%   | Mean±SE             | Range | CV%    |  |
|           | $\mathbf{P}_1$   | $3.21 \pm 0.10$   | 0.33        | 3.21  | $3.05 \pm 0.01$     | 0.25  | 2.29   |  |
| DW        | $\mathbf{P}_2$   | $3.10{\pm}0.07$   | 0.24        | 2.39  | $3.10{\pm}0.01$     | 0.24  | 2.39   |  |
| BW        | $\mathbf{F}_{1}$ | $3.42 \pm 0.03$   | 0.31        | 3.19  | $3.28 \pm 0.03$     | 0.34  | 3.36   |  |
| 5         | $\mathbf{F}_2$   | $3.49{\pm}0.01$   | 1.12        | 6.36  | $3.17 \pm 0.01$     | 1.19  | 6.03   |  |
|           | F <sub>3</sub>   | $3.33 {\pm} 0.02$ | 0.79        | 5.42  | $3.39{\pm}0.02$     | 0.75  | 6.01   |  |
|           | $\mathbf{P}_{1}$ | $160.62 \pm 5.16$ | 16.50       | 3.21  | $182.88{\pm}0.84$   | 15.00 | 2.289  |  |
| COM       | $\mathbf{P}_2$   | $171.23 \pm 4.09$ | 13.27       | 2.39  | $171.23 \pm 0.82$   | 13.27 | 2.388  |  |
| SCY/P     | $\mathbf{F}_{1}$ | $198.24 \pm 2.00$ | 17.98       | 3.19  | $199.37 {\pm} 1.85$ | 18.15 | 2.929  |  |
| 5         | $\mathbf{F}_2$   | $192.07 \pm 0.72$ | 61.60       | 6.36  | $176.19 \pm 0.64$   | 66.05 | 6.025  |  |
|           | $F_3$            | $214.23 \pm 1.22$ | 48.41       | 5.83  | $207.05 \pm 1.21$   | 45.75 | 6.003  |  |
|           | $\mathbf{P}_{1}$ | 54.54±2.39        | 8.18        | 4.38  | $66.43 \pm 0.31$    | 5.76  | 2.298  |  |
| 1.17/D    | $\mathbf{P}_2$   | 57.77±1.54        | 5.54        | 2.67  | 57.77±0.31          | 5.54  | 2.672  |  |
| LY/P<br>g | $\mathbf{F}_{1}$ | $70.69 \pm 0.93$  | 9.11        | 4.15  | $74.66 \pm 0.76$    | 7.13  | 3.211  |  |
| B         | $F_2$            | $67.10 \pm 0.34$  | 40.82       | 8.57  | $64.30{\pm}0.29$    | 36.37 | 7.525  |  |
|           | $F_3$            | $74.11 \pm 0.42$  | 19.96       | 5.82  | $73.73 \pm 0.44$    | 18.57 | 6.054  |  |
|           | $\mathbf{P}_{1}$ | $33.95 \pm 0.89$  | 3.24        | 2.64  | $36.32 \pm 0.08$    | 1.24  | 1.144  |  |
|           | $\mathbf{P}_2$   | $33.74 \pm 0.42$  | 1.34        | 1.24  | $33.74{\pm}0.08$    | 1.34  | 1.239  |  |
| L%        | $\mathbf{F}_{1}$ | $35.66 \pm 0.34$  | 3.40        | 3.03  | 37.45±0.16          | 1.47  | 1.321  |  |
|           | $F_2$            | 34.93±0.11        | 14.61       | 5.53  | $36.49{\pm}0.09$    | 9.65  | 4.082  |  |
|           | $F_3$            | $34.65 \pm 0.20$  | 10.29       | 5.92  | $35.62 \pm 0.11$    | 6.20  | 3.123  |  |
|           | $\mathbf{P}_{1}$ | $33.92 \pm 0.43$  | 2.18        | 1.28  | $36.28 \pm 0.09$    | 1.84  | 1.271  |  |
| FI        | $\mathbf{P}_2$   | $35.46 \pm 0.41$  | 3.50        | 1.16  | $35.46{\pm}0.08$    | 3.50  | 1.157  |  |
| FL<br>mm  | $\mathbf{F}_{1}$ | $36.82 \pm 0.11$  | 4.00        | 0.96  | 36.22±0.16          | 0.27  | 1.407  |  |
|           | $\mathbf{F}_2$   | $36.98{\pm}0.05$  | 14.36       | 2.10  | $37.27 \pm 0.05$    | 8.42  | 2.316  |  |
|           | $F_3$            | $35.90 \pm 0.09$  | 7.83        | 2.69  | 36.83±0.12          | 6.80  | 3.417  |  |
|           | $\mathbf{P}_{1}$ | 3.67±0.21         | 0.70        | 5.74  | $3.88 \pm 0.04$     | 0.70  | 5.686  |  |
|           | $\mathbf{P}_2$   | $3.46 \pm 0.17$   | 0.80        | 4.92  | $3.46 \pm 0.03$     | 0.80  | 4.922  |  |
| Mic       | $\mathbf{F}_{1}$ | $3.65 \pm 0.09$   | 0.80        | 7.45  | $3.61 \pm 0.04$     | 0.40  | 3.564  |  |
|           | $F_2$            | $3.79 \pm 0.04$   | 2.50        | 17.87 | $3.79 \pm 0.01$     | 1.80  | 6.239  |  |
|           | $F_3$            | $3.49 \pm 0.03$   | 1.10        | 8.24  | $3.76 \pm 0.04$     | 1.80  | 11.237 |  |
|           | $\mathbf{P}_{1}$ | 12.00±•, ٤•       | 1.00        | 3.49  | $11.60 \pm 0.04$    | 0.80  | 1.895  |  |
|           | $\mathbf{P}_2$   | $11.58 \pm 0.18$  | 0.80        | 1.56  | $11.58 \pm 0.04$    | 0.80  | 1.563  |  |
| FS        | $\mathbf{F}_{1}$ | $11.47 \pm 0.11$  | 1.00        | 2.91  | $11.68 \pm 0.03$    | 0.20  | 0.787  |  |
|           | $F_2$            | $11.17 \pm 0.04$  | 2.30        | 5.32  | $11.58 \pm 0.02$    | 1.30  | 2.230  |  |
|           | $F_3$            | $11.61 \pm 0.03$  | 1.20        | 2.58  | $11.64{\pm}0.03$    | 1.20  | 2.752  |  |
|           | $\mathbf{P}_{1}$ | 86.80±0.51        | 1.90        | 0.59  | $87.21 \pm 0.09$    | 2.20  | 0.490  |  |
|           | $\mathbf{P}_2$   | 87.14±0.52        | 2.00        | 0.60  | $87.14{\pm}0.10$    | 2.00  | 0.596  |  |
| UR%       | $\mathbf{F}_{1}$ | $87.48 \pm 0.09$  | 0.90        | 0.31  | $87.39{\pm}0.09$    | 0.80  | 0.343  |  |
|           | $\mathbf{F}_2$   | $87.19 \pm 0.04$  | 3.70        | 0.78  | $87.66 \pm 0.04$    | 2.80  | 0.696  |  |
|           | F <sub>3</sub>   | 87.05±0.11        | 4.60        | 1.24  | 87.29±0.12          | 6.00  | 1.458  |  |

 TABLE 2. Phenotypic mean performance, standard error, range and coefficient of variation % for yield and fiber quality traits of the two cotton crosses

Estimates of broad sense heritability  $(h_{L}^2)$ coupled with genetic advance as percent of mean (GAM %) will be more useful to predict the outcome and select the most superior plants among early segregating generations (Table 3). The present study recorded high broad sense heritability (more than 60%) couples with low or moderate genetic advance as percent mean (GAM %) over two cotton crosses. These results indicated the presence of non-additive gene action(dominance and epistasis effects) for all studied traits (Soomro et al. 2010). The same findings reported by Vrinda and Patil (2018) and Kumar et al. (2019). While, boll weight and Micronaire value had higher broad sense heritability plus higher or moderate GMA% over crosses, indicating present of additive gene action and less environmental effect which enhances the early fixation of genes (Vrinda and Patil, 2018). So, simple selection procedures are effective for these two traits. These results suggest that there is a possibility of improvement of these traits using pure line selection (Kumar et al. 2019). Gnanasekaran et al. (2018) reported high heritability coupled with high genetic advance for boll weight and micronaire value indicating that additive gene action controlled the inheritance of these traits.

### Variability among F3 generation

F<sub>2</sub> generation consisted of seven families for each cross and each family had fifteen individual plants. The analysis of variances (ANOV)for the F<sub>3</sub> population exhibited highly significant differences between F, families for all the studied traits among the two cotton crosses are presented in Table 4. The geneticists classified the variance among F<sub>3</sub> generation into two portions the first one is non-heritable variances reflect environment effect. The second a heritable portion can be divided into two portions; variance between families  $(\sigma_{\rm p}^2)$ and variance within families  $(\sigma_w^2)$  (Kearsey and Pooni 1996). The presence of F<sub>3</sub> variance reflects the homozygosity between parental lines and low variation due to environment.Similar results were reported by El-Mansy (2005), Aziz et al. (2014) and Abd El-Moghny (2016) for F<sub>3</sub> generation.

The estimates of genetic variability within and between  $F_3$  families, genetic components (additive and dominance variances), intra-class correlation, broad and narrow sense heritability, genetic advance and genetic advance as a percent of mean are presented in Table 5 for the eight studied quantitative traits over the two cotton crosses.

| Genetic                      | BW    | SCY/P   | LY/P    | I 0/2       | FL    | Mie    | FS     | UD0/  |  |  |  |  |
|------------------------------|-------|---------|---------|-------------|-------|--------|--------|-------|--|--|--|--|
| parameters                   | G     | G       | g       | L /0        | mm    | wite   | 15     | 011/0 |  |  |  |  |
| (Giza 92 x Giza 87)          |       |         |         |             |       |        |        |       |  |  |  |  |
| $\sigma^2 E$                 | 0.011 | 32.505  | 6.217   | 0.713       | 0.161 | 0.049  | 0.064  | 0.201 |  |  |  |  |
| $\sigma^2 \; G$              | 0.038 | 116.829 | 26.882  | 3.014       | 0.440 | 0.410  | 0.290  | 0.262 |  |  |  |  |
| $\sigma^2 \; F_2$            | 0.049 | 149.335 | 33.098  | 3.727       | 0.601 | 0.459  | 0.354  | 0.463 |  |  |  |  |
| PCV                          | 6.362 | 6.362   | 8.574   | 5.527       | 2.096 | 17.867 | 5.322  | 0.781 |  |  |  |  |
| GCV                          | 5.592 | 5.628   | 7.727   | 4.970       | 1.793 | 16.885 | 4.816  | 0.588 |  |  |  |  |
| h <sup>2</sup> <sub>bs</sub> | 0.759 | 0.732   | 0.740   | 0.687       | 0.790 | 0.839  | 0.685  | 0.842 |  |  |  |  |
| S                            | 0.022 | 1.191   | 2.269   | 0.972       | 0.477 | -0.326 | 0.556  | 0.414 |  |  |  |  |
| GA                           | 2.33  | 0.74    | 5.27    | 3.66        | 1.97  | 1.43   | 1.42   | 1.09  |  |  |  |  |
| GAM%                         | 6.676 | 21.112  | 2.746   | 5.449       | 5.635 | 3.875  | 37.518 | 9.746 |  |  |  |  |
|                              |       |         | (Giza 9 | 6 x Giza 87 | )     |        |        |       |  |  |  |  |
| $\sigma^2 E$                 | 0.005 | 17.117  | 2.356   | 0.174       | 0.190 | 0.039  | 0.041  | 0.226 |  |  |  |  |
| $\sigma^2  G$                | 0.031 | 95.580  | 21.059  | 2.045       | 0.554 | 0.017  | 0.026  | 0.146 |  |  |  |  |
| $\sigma^2 \; F_2$            | 0.037 | 112.698 | 23.416  | 2.219       | 0.745 | 0.056  | 0.067  | 0.372 |  |  |  |  |
| PCV                          | 6.025 | 6.025   | 7.525   | 4.082       | 2.316 | 6.239  | 2.230  | 0.696 |  |  |  |  |
| GCV                          | 5.584 | 5.549   | 7.137   | 3.919       | 1.998 | 3.449  | 1.397  | 0.436 |  |  |  |  |
| h <sup>2</sup> <sub>bs</sub> | 0.668 | 0.697   | 0.755   | 0.890       | 0.652 | 0.704  | 0.873  | 0.759 |  |  |  |  |
| S                            | 0.159 | 8.829   | 3.913   | 0.373       | 0.909 | -0.135 | 0.385  | 0.421 |  |  |  |  |
| GA                           | 2.62  | 0.60    | 4.68    | 3.42        | 2.24  | 1.25   | 0.70   | 0.91  |  |  |  |  |
| GAM%                         | 8.27  | 18.95   | 2.66    | 5.32        | 6.13  | 3.35   | 18.61  | 7.90  |  |  |  |  |

TABLE 3. Genetic parameters for F, generations over all the studied traits for the two cotton crosses

| Mean Squares for F <sub>3</sub> families |                   |         |            |           |         |          |        |        |         |
|------------------------------------------|-------------------|---------|------------|-----------|---------|----------|--------|--------|---------|
|                                          | Giza 92 x Giza 87 |         |            |           |         |          |        |        |         |
| S.O.V                                    | d.f               | BW<br>g | SCY/P<br>g | LY/P<br>g | L%      | FL<br>mm | Mic    | FS     | UR%     |
| Between families                         | 6                 | 0.38**  | 1441.50**  | 227.74**  | 46.98** | 10.02**  | 0.86** | 0.97** | 12.16** |
| Within families                          | 98                | 0.01    | 77.11      | 8.01      | 2.28    | 0.38     | 0.03   | 0.03   | 0.48    |
|                                          | Giza 96 x Giza 87 |         |            |           |         |          |        |        |         |
| Between families                         | 6                 | 0.52**  | 1517.53**  | 181.35**  | 10.79** | 16.11**  | 1.64** | 0.82** | 16.15** |
| Within families                          | 98                | 0.02    | 71.04      | 10.06     | 0.67    | 0.68     | 0.09   | 0.05   | 0.73    |

TABLE 4. Analysis of variance for F, generation among all the studied traits over two cotton crosses

\* and \*\* Significant at 5 and 1% levels of probability.

The variance within  $F_3$  families ( $\sigma^2_{w}$ ) is lower than between families  $(\sigma_B^2)$  for all the studied traits over the two crosses. Also, F<sub>3</sub> is a segregating generation and had plant to plant variances (intraclass correlation). Intra-class correlation  $(t_{rs})$ is a clear cut relationship between family mean and individual values in that family for a trait as defined by Sharma (1988) and Kearsey and Pooni (1996). It ranged from 0.50 to 0.66 for all the studied traits over the two crosses (Table 5). This indicated that more than 50 or 66% of the variance in F<sub>2</sub> families is due to differences among families and the remaining part within families (intra-class variability). So, intra-class correlation should be larger than intra-class variability. In other words, similarity between individuals within family (full sibs) is very large but each family is distinctly from the other. These results are in the same trend with highly significant mean squares between families which suggested that the F<sub>3</sub> generation had amount of genetic variability. These findings explain that selection between families is better than within families (El-Mansy 2005 and Abd El-Moghny, 2016).

Also, genetic components additive [D], dominance [H] variance and degree of dominance were computed for all the studied traits over two cotton crosses (Table 5). The additive genetic variance was larger than dominance variance for all the studied traits except seed cotton yield / plant and lint %. These results indicated that additive gene controlled the inheritance of these traits. Also, these six studied traits showed partial degree of dominance (less than unity). While, seed cotton yield / plant and lint % controlled by non-additive gene action and showed overdominance degree of dominance (more than unity) for cross I (Giza 92 x Giza 87). So, selection strategies would be more efficient to improve most of these traits. On the other hand, cross II (Giza 96 x Giza 87) has high values of dominance genetic variance more than additive variance for all the studied traits except for boll weight and fiber length. These results indicated that dominance variance played a major role in controlling these traits. Therefore, overdominance controlled all the studied traits except for boll weight and fiber length were controlled by partial dominance. Dominance genetic variance and degree of dominance had positive sign for all the studied traits over two cotton crosses, indicating that the parent with increasing alleles is dominant than the parent with decreasing alleles. Aziz et al. (2014) found different gene action for the same traits across ten Upland cotton crosses during F<sub>3</sub> generation.

Narrow sense heritability  $(h_{ps}^2)$  was defined as the ration between additive genetic variance  $(V_A)$  to the total phenotypic variance  $(V_{ph})$ . All the studied traits recorded high (>60%) or moderate (30-60%) values of narrow sense heritability (Table 5) as classified by Robinson et al. (1949) across the two cotton crosses. These high or moderate values of heritability reflect the high efficiency of selection procedures. Also, the estimates values of broad sense heritability  $(h_{ps}^2)$  were larger than narrow sense heritability  $(h_{ps}^2)$  for all traits across two cotton crosses. Aziz et al. (2014) recorded high broad sense heritability in F<sub>3</sub> generation.

Cross I (Giza 92 x Giza 87) recorded low genetic advance values for boll weight, seed cotton yield/plant, fiber length and Micronaire value than cross II (Giza 96 x Giza 87). While, cross I showed high genetic advance for lint yield/ plant, lint % and fiber strength more than cross II as presented in Table 5 and Fig. 1.

| Genetic parameter                      | Abb.             | BW<br>g | SCY/P<br>g | LY/P<br>g | L%    | FL<br>mm | Mic    | FS    | UR%   |
|----------------------------------------|------------------|---------|------------|-----------|-------|----------|--------|-------|-------|
| Giza 92 x Giza 87                      |                  |         |            |           |       |          |        |       |       |
| Excepted variance of $F_3$ family mean | $\sigma^2_{\ B}$ | 0.024   | 90.960     | 14.649    | 2.980 | 0.643    | 0.107  | 0.062 | 0.778 |
| Average variance within $F_3$ families | $\sigma^2_{_W}$  | 0.013   | 77.105     | 8.008     | 2.282 | 0.379    | 0.031  | 0.032 | 0.484 |
| Additive variance                      | V <sub>D</sub>   | 0.048   | 139.753    | 28.386    | 4.904 | 1.209    | 0.107  | 0.124 | 1.430 |
| Dominance variance                     | $V_{_{\rm H}}$   | 0.009   | 337.335    | 7.292     | 8.448 | 0.613    | 0.035  | 0.009 | 1.013 |
| Environmental variance                 | $V_{_E}$         | 0.011   | 28.769     | 5.022     | 0.488 | 0.179    | 0.037  | 0.041 | 0.265 |
| Intra-class correlation                | $t_{FS}$         | 0.652   | 0.541      | 0.647     | 0.566 | 0.629    | 0.641  | 0.661 | 0.617 |
| Inta-class variability                 |                  | 0.348   | 0.459      | 0.353     | 0.434 | 0.371    | 0.359  | 0.339 | 0.383 |
| Broad sense heritability               | $h^2_{\ bs}$     | 0.774   | 0.854      | 0.819     | 0.915 | 0.851    | 0.702  | 0.700 | 0.826 |
| Narrow sense heritability              | $h^2_{ns}$       | 0.740   | 0.533      | 0.647     | 0.640 | 0.755    | 0.649  | 0.688 | 0.702 |
| Degree of dominance                    | H / D            | 0.187   | 2.414      | 0.257     | 1.723 | 0.507    | 0.327  | 0.069 | 0.708 |
| Selection differential                 | S                | 0.004   | 0.203      | 0.369     | 0.168 | 0.171    | -0.095 | 0.068 | 0.086 |
| Genetic advance                        | GA               | 0.165   | 7.999      | 3.991     | 1.522 | 0.845    | 0.217  | 0.168 | 0.877 |
| Genetic advance as percent of mean %   | GAM%             | 4.932   | 3.730      | 5.359     | 4.370 | 2.344    | 6.378  | 1.436 | 1.006 |
|                                        |                  | -       | Giza 96 x  | Giza 87   |       |          |        |       |       |
| Excepted variance of $F_3$ family mean | $\sigma^2_{\ B}$ | 0.033   | 96.433     | 11.419    | 0.675 | 1.029    | 0.103  | 0.051 | 1.028 |
| Average variance within $F_3$ families | $\sigma^2_{_W}$  | 0.018   | 71.036     | 10.062    | 0.665 | 0.677    | 0.089  | 0.050 | 0.730 |
| Additive variance                      | V <sub>D</sub>   | 0.065   | 162.440    | 17.034    | 0.913 | 1.841    | 0.157  | 0.070 | 1.769 |
| Dominance variance                     | $V_{_{\rm H}}$   | 0.014   | 243.408    | 46.427    | 3.495 | 1.734    | 0.398  | 0.261 | 2.303 |
| Environmental variance                 | $V_{_{\rm E}}$   | 0.005   | 17.117     | 2.356     | 0.174 | 0.190    | 0.039  | 0.041 | 0.226 |
| Intra-class correlation                | t <sub>FS</sub>  | 0.65    | 0.58       | 0.53      | 0.50  | 0.60     | 0.54   | 0.51  | 0.58  |
| Inta-class variability                 |                  | 0.35    | 0.42       | 0.47      | 0.50  | 0.40     | 0.46   | 0.49  | 0.42  |
| Broad sense heritability               | $h^2_{\ bs}$     | 0.909   | 0.907      | 0.901     | 0.885 | 0.900    | 0.832  | 0.714 | 0.886 |
| Narrow sense heritability              | $h^2_{ns}$       | 0.863   | 0.660      | 0.536     | 0.452 | 0.728    | 0.509  | 0.368 | 0.668 |
| Degree of dominance                    | H / D            | 0.213   | 1.498      | 2.725     | 3.829 | 0.942    | 2.538  | 3.754 | 1.302 |
| Selection differential                 | S                | 0.014   | 1.124      | 0.640     | 0.105 | 0.063    | -0.041 | 0.016 | 0.054 |
| Genetic advance                        | GA               | 0.204   | 9.516      | 2.775     | 0.584 | 1.063    | 0.250  | 0.137 | 0.987 |
| Genetic advance as percent of mean %   | GAM%             | 5.991   | 4.571      | 3.732     | 1.634 | 2.881    | 6.709  | 1.174 | 1.130 |

TABLE 5. Genetic parameters and selection response for all the studied traits through F<sub>3</sub> generation over two cotton crosses



Fig. 1. Genetic advance after two cycles of selection for the two cotton crosses over all the studied traits



Fig. 2. Genetic advance as a percent of mean after two cycles of selection for the two cotton crosses over all the studied traits

The genetic advances as percent of mean (GAM %) was lower than or equal to 10% for all the studied traits over the two cotton crosses as partitioned by Johnson et al. (1955). Genetic advance as a percent of mean (GAM %) was also found to be higher in  $F_2$  than  $F_3$  for boll weight, micronaire value and fiber strength across the two cotton crosses. This change may be related to the decline in values of phenotypic variance from F. to  $F_2$  which lead to decreasing GAM %, since it depends upon phenotypic variance (Tables 3&5 and Fig. 2). Selection response was positive from  $F_2$  to  $F_3$  generations for all the studied traits except for Micronaire value (negative sign is desirable). This is as a result of increasing gene frequency of favorable alleles and elimination of others leading to changes in genotypic and phenotypic values in the studied population to exhibit better performance than their parents. As shown in Table 6, the high of genetic advance as a percent of mean (GAM %) of F<sub>2</sub> families reflect higher mean values of the selected families in F<sub>3</sub> which will be the nucleus of  $F_4$  generation.

#### Prediction of new recombinant in F3 generation

The proportion of new recombinants through  $F_3$  generation for yield, its components and fiber

quality traits over the two cotton crosses is shown in Table 7. The probability of new recombinants of inbreed lines falling outside parental range were for boll weight (39.74 and 46.41%), seed cotton yield / plant (32.99 and 32.64%), lint yield / plant (38.21 and 15.86%), lint % (48.41 and 8.85%), fiber length (24.51 and 38.21%), Micronaire value (37.45 and 30.15), fiber strength (49.20 and 48.41%) and uniformity ratio (44.43 and 49.60%) for cross I and cross II, respectively. These results showed that cross I had higher values than cross II for all studied traits except for boll weight and fiber length. This may be due to most of the studied traits controlled by additive genetic variance in cross I, while non-additive gene action control inheritance of all traits except for boll weight and fiber length for cross II. It could be explained by probability that the studied cotton genotypes had common genetic pool. The cotton breeder should focus on the promising cross which has high values for new recombinants. In related studies, Awaad and Hassan (1996), El-Mansy (2005), Abd El-Moghny (2016) and Dawwam et al. (2016) reported of moderate probability of new recombinants for traits among F<sub>3</sub> generation in some Egyptian cotton crosses failing outside parental range.

### **Conclusion**

The conclusion of this study is that the cotton breeder should consider heritability, genetic advance, phenotypic and genotypic variance for quantitative traits as important tools to determining the effectiveness of selection. The highly heritable traits offer better chances of selection through segregating generations. Selection from one generation to anther during breeding program will lead to decreased genetic variability. However, selection procedures cause increase in phenotypic mean performance in the studied population for all traits. So, the breeder will get an improved population at the onset of homozygosity in  $F_8$  generation and onward stages.

#### **Conflict of interest**

The author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

#### Funding

this research was provided by Cotton Research Institute (CRI), Agricultural Research Center (ARC), Egypt

| <b>FABLE 6. Mean performance for the set</b> | lected F <sub>2</sub> plants and F <sub>3</sub> | , families of the two cotton o | crosses |
|----------------------------------------------|-------------------------------------------------|--------------------------------|---------|
|----------------------------------------------|-------------------------------------------------|--------------------------------|---------|

| Selected plants              | BW    | SCY/P   | LY/P      | Ι%      | FL     | Mic   | FS     | LIR%   |
|------------------------------|-------|---------|-----------|---------|--------|-------|--------|--------|
|                              | g     | g       | g         | E70     | mm     | wite. |        | UK/0   |
|                              |       | (       | Giza 92 x | Giza 87 |        |       |        |        |
| Selected mean F <sub>2</sub> | 3.514 | 193.260 | 69.366    | 35.901  | 37.462 | 3.467 | 11.729 | 87.604 |
| Family 1                     | 3.59  | 196.36  | 67.38     | 34.32   | 35.96  | 3.88  | 12.08  | 88.54  |
| Family 2                     | 3.27  | 214.82  | 76.33     | 35.53   | 35.68  | 3.32  | 11.52  | 86.94  |
| Family 3                     | 3.18  | 222.57  | 76.12     | 34.28   | 35.60  | 3.36  | 11.66  | 87.36  |
| Family 4                     | 3.18  | 210.43  | 75.58     | 35.97   | 36.88  | 3.48  | 11.72  | 87.82  |
| Family 5                     | 3.27  | 211.85  | 70.32     | 34.47   | 37.12  | 3.46  | 11.78  | 87.44  |
| Family 6                     | 3.32  | 222.57  | 75.37     | 35.16   | 35.46  | 2.94  | 11.46  | 86.36  |
| Family 7                     | 3.56  | 230.57  | 75.85     | 34.03   | 35.78  | 3.34  | 11.50  | 85.48  |
| Families Mean                | 3.34  | 215.60  | 73.85     | 34.82   | 36.07  | 3.40  | 11.67  | 87.13  |
|                              |       | (       | Giza 96 x | Giza 87 |        |       |        |        |
| Selected mean F <sub>2</sub> | 3.334 | 185.017 | 68.216    | 36.863  | 38.177 | 3.655 | 11.964 | 88.077 |
| Family 1                     | 3.20  | 207.39  | 75.68     | 36.48   | 36.82  | 3.54  | 11.80  | 87.90  |
| Family 2                     | 3.19  | 188.91  | 67.75     | 35.87   | 38.44  | 3.56  | 11.70  | 89.00  |
| Family 3                     | 3.43  | 208.99  | 75.17     | 35.98   | 36.88  | 3.55  | 11.90  | 86.86  |
| Family 4                     | 3.47  | 211.55  | 74.46     | 35.21   | 37.24  | 3.38  | 11.44  | 87.40  |
| Family 5                     | 3.34  | 196.79  | 69.61     | 35.39   | 36.32  | 3.70  | 11.46  | 87.00  |
| Family 6                     | 3.64  | 218.38  | 78.15     | 35.78   | 35.94  | 4.06  | 11.26  | 87.10  |
| Family 7                     | 3.59  | 225.21  | 79.73     | 35.40   | 36.64  | 4.26  | 12.00  | 86.18  |
| Families Mean                | 3.41  | 208.17  | 74.37     | 35.73   | 36.90  | 3.72  | 11.65  | 87.35  |

| <b>T '</b> | Parental mean | Additive | Inbreds falling o<br>rang | Range of inbred  |                       |
|------------|---------------|----------|---------------------------|------------------|-----------------------|
| Traits     | m             | [d]      | Proportion [d]<br>/\/D    | Probability<br>% | $m \pm 2\sqrt{D}$     |
|            |               |          | Giza 92 x Giza 87         |                  |                       |
| BW         | 3.072         | 0.024    | 0.266                     | 39.74            | 3.591±2.718           |
| SCY/P      | 177.055       | 5.825    | 0.449                     | 32.99            | $189.568 \pm 142.282$ |
| LY/P       | 62.099        | 4.326    | 0.304                     | 38.21            | 66.810±45.499         |
| L%         | 35.032        | 15.578   | 0.048                     | 48.41            | 38.274±29.416         |
| FL         | 35.868        | 0.412    | 0.697                     | 24.51            | 36.889±32.491         |
| FF         | 3.670         | 1.526    | 0.310                     | 37.45            | 4.218±2.912           |
| FS         | 11.588        | 0.012    | 0.027                     | 49.20            | $12.289 \pm 10.882$   |
| UR%        | 87.178        | 0.034    | 0.144                     | 44.43            | 89.363±84.581         |
|            |               |          | Giza 96 x Giza 87         |                  |                       |
| BW         | 3.072         | 0.024    | 0.095                     | 46.41            | $3.582 \pm 2.562$     |
| SCY/P      | 177.055       | 5.825    | 0.457                     | 32.64            | $202.546 \pm 151.565$ |
| LY/P       | 62.099        | 4.326    | 1.048                     | 15.86            | 70.354±53.845         |
| L%         | 35.032        | 1.292    | 1.353                     | 8.85             | 36.943±33.122         |
| FL         | 35.868        | 0.412    | 0.304                     | 38.21            | 38.582±33.154         |
| FF         | 3.670         | 0.206    | 0.520                     | 30.15            | $4.462 \pm 2.878$     |
| FS         | 11.588        | 0.012    | 0.046                     | 48.41            | 12.115±11.061         |
| UR%        | 87.178        | 0.034    | 0.026                     | 49.60            | 89.838±84.518         |

 TABLE 7. Predicting the properties of the new recombinations failing outside parental range through the F3 generation for all the studied cotton traits in thetwo crosses

#### **References**

- Abd El-Moghny, A. M. (2016) Genetic analysis and prediction of new recombination in some cotton (*G. barbadense* L.) crosses. J. Agric. Res. Kafr El-Sheikh Univ. A. Plant Production, 42 (3), 319-335.
- Acquaah, G. (2012) Principles of Plant Genetics and Breeding. 2<sup>nd</sup> ed. John Wiley & Sons, Ltd.
- Ahsan, M. Z. and H. T. Mahmmod. (2019) Genetic variability and heritability in F<sub>2</sub> population of *Gossypium hirsutum* for seed cotton yield and its components. *Internl J. Cotton Res. and Tech.*, 1 (1), 29-31.
- Awaad, H. A. and E. E. Hassan. (1996) Gene action, prediction and response to selection for yield and its contributing characters in six cotton crosses. *Zagazig, J. Agric. Res.*, 23 (2), 217-237.
- Aziz, U. J. Afzal, M. Iqbal, M. Naeem, M. A. Khan, W. Nazeer, T. Aslam and W. Zahid. (2014) Selection response, heritability and genetic variability studies in upland cotton. *J. Appl. Environ. Biol. Sci.*, 4 (8S), 400-412.
- Burton, G. W. (1952) Quantitative inheritance in grasses. Proceeding of 6<sup>th</sup>International Congress, 277-283.

- Dawwam, H. A., F. A. Hendawy, M. A. Abd El-Aziz, R. M. Esmail, A. B. Khatab and Mahros, H. El-Shymaa. (2016) Predicing the properties of new recombinant inbred lines Using triple test cross analysis for seed cotton yield and its components in cotton (*G. barbadense* L.). In Proceed. 10<sup>th</sup> International Plant Breeeding Conference, 5-6 Septmber 2016, Fac. Agric. Menoufia Univ.
- Devidas, A.A., S.A. Narayan and P.N. Prakash. (2017) Study of genetic variability, heritability and genetic advance in some genotypes of Egyptian cotton (*Gossypium barbadense L.*). J. of Global Biosciences, 6 (4), 4954-4957.
- El-Mansy, Y. M. (2005) Using genetic components for predicting new combination in some cotton cresses (*Gossypium barbadense* L.). *Ph. D. Thesis,* Fac., Agric., Mansoura Univ., Egypt.
- El-Many, Y.S. (2015) Relative efficiency of direct and indirect selection with selection indices for improving some economic characters in cotton (*G. barbadense* L.). J. Agric. Res. Kafr El-Sheikh Univ., 41 (1), 119-129.
- Falconer, D.S. (1989) Introduction to Quantitative Genetics. Richard Clay Ltd., Bungay Suffolk, Great Britain.

- Fisher, R. A. and F. Yates. (1963) Statistical Tables for Biological Agricultural and Medical Research. Edinburgh. Oliver and Boyd.
- Gnanasekaran, M., K. Thiyagu and M. Gunasekaran. (2018) Genetic variability heritability and genetic advance studies in cotton (*Gossypium hirsutum* L.). *Electronic J. of Plant Breeding*, 9 (1), 377-382.
- Gomez, K. A. and A. A. Gomez. (1984) Statistical Procedures for Agricultural Research. 2<sup>nd</sup> ed John Wiley and sons, NewYork, USA.
- Johnson, H. W., H. F. Robinson and R. E. Comstock. (1955) Estimates of genetic and environmental variability in soybeans. *Agron. J.* 47, 314-308.
- Jinks, J. L. and Pooni, H. S. (1976) Predicting the properties of recombinant inbred lines derived by single seed descent. *Heredity*, 36 (2), 253 266.
- Kearsey, M. J. and H. S. Pooni. (1996) The Genetical Analysis of Quantitative Traits. Chapman & Hall, London, UK.
- Khokhar, E. S., A. Shakeel, M.A. Maqbool, M.W. Anwar, Z. Tanveer, M.F. Irfan. (2017) Genetic study of cotton (*Gossypium hirsutum* L.) genotypes for different agronomic yield and quality traits. *Pakistan J. of Agric. Res.* **30** (4), 363-372.

- Kumar, C.P.S.,S. Raju, R.E.B. Rajan, A. Muraleedharan and D.B. Suji. (2019) Studies on genetic variability, heritability and genetic advance in cotton (*Gossypium hirsutum* L.). *Plant Archives*, **19** (1), 934-937.
- Robinson, H.F., R.E. Comstock and P. H. Harvey. (1949) Estimates of heritability and degree of dominance in corn. *Agron. J.* 41, 353-359.
- Sharma, J.R. (1988) Statistical and Biometrical Techniques in Plant Breeding. New Delhi, New Age International.
- Singh, R. K. and B. D. Chaudhary. (1985) Biometrical Methods in Quantitative Genetic Analysis. Kalyani Publishers, New Delhi, India.
- Sivasubramanian S. and M. Menon. (1973) Heterosis and inbreeding depression in rice. *Madras Agric. J.* 60, 1139-1140.
- Soomro, Z.A., M.B. Kumbhar, A.S. Larik, M. Imran, and S.A. Brohi. (2010) Heritability and selection response in segregating generations of Upland cotton. *Pakistan J. Agric. Res.* 23 (1-2), 25-30.
- Vrinda, J. and B. R. Patil. (2018) Genetic variability and heritability study in F<sub>2</sub> population for yield, yield attributes and Fiber quality traits in cotton (*Gossypium hirsutum* L.). J. of Pharmacognosy and Phytochemistry, 7 (4), 2816-2818.

التباين والمكونات الوراثية والاستجابة للانتخاب فى الاجيال الانعزالية لبعض هجن القطن ريهام حلمي جبيلي معهد بحوث القطن ، مركز البحوث الزراعية ، مصر

يعتمد برنامج التربية الناجح على استجابة التباين الوراثي للانتخاب ودرجة التوريث والفعل الجيني. تم إجراء هذا البحث في محطة البحوث الزراعية بسخا مركز البحوث الزراعية بكفر الشيخ. مصر. لتقدير التباين الوراثي والمكونات الوراثية ودرجة التوريث والتقدم الوراثي الناتج عن التهجين في هجينين من القطن المصري(جيزة x ٩٢ جيزة ٨٧ و جيزة x ٩٦ جيزة ٨٧) في الجيلين الثاني والثالث لاختيار أفضل النباتات لثمانية صفات محصول وجودة الألياف. كان متوسط الأداء للجيل الأول أفضل من الأبوين في كلا الهجينين. لوحظ أن الفرق في المدى الأقصى والأدنى في الجيل الثاني أكبر من الجيل الثالث. كان معامل التباين الكلي أكبر من معامل التباين الوراثي في الجيل الثاني وكان الفرق منخفضًا. أظهرت معظم الصفات تحت الدراسة درجة كبيرة (اكبر من ٦٠٪) للتوريث على النطاق الواسع مقترنًا بتقدم وراثي منخفض أو معتدل كنسبة مئوية من المتوسط في الجيل الثاني باستثناء وزن اللوزة وقيمة الميكرونير . لذلك فإن هذه الصفات يتحكم فيها الفعل الجيني الغير مضيف. أظهر تحليل التباين لعائلات الجيل الثالث فروق عالية المعنوية بين العائلات وكان التباين داخلها أقل منه بين العائلات لجميع الصفات تحت الدراسة على مستوى الهجينين. كانت قيم الارتباط لجميع عائلات الجيل الثالث منخفضة داخل الطبقة على الهجينين، لذا فإن الانتخاب بين العائلات أفضل من داخلها. كان التباين الور اثي الإضافي أكبر من التباين السائد لجميع الصفات التي درست باستثناء محصول القطن الزهر / نبات والنسبة المئوية للتصافي، كما أظهرت هذه الصفات درجة سيادة جزئية للهجين الأول (جيزة ٩٢ × جيزة ٨٧). بينما كانت للهجين الثاني (جيزة ٩٦ × جيزة ٨٧) قيم الفعل الجيني السائد أكبر من الفعل الجيني المضيف لجميع الصفات باستثناء وزن اللوزة وطول التيلة وقد أظهرت هذه الصفات سيادة فائقة. تم الحصول على فرق الانتخاب والاستجابة للانتخاب لتكون موجبة لجميع الصفات في الجيل الثاني كان احتمال حدوث الاتحادات الجديدة التي تقع خارج حدود الابوين أعلى في الهجين الأول عن الثاني لجميع الصفات باستثناء صفة وزن اللوزة وطول التيلة. تكشف الدراسة أن الأنتخاب المناسب للاباء يؤدى الى تحسين في الاجيال القادمة.